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Problems of pulse guidance and motion correction are considered under conditions
of indeterminacy on the basis of initial data and perturbations in the system of
measurement (observation) of phase coordinates, Guaranteed unimprovable esti-
mates of the minimax miss of the system are obtained in a linear approximation.
Estimate of the optimum number of observations and of pulse control effects is
indicated, By its statement and method of solution derivation this work is closely
related to the investigations in [1— 3].

1, General statement of the problem, Let the derivation of the control-
led object from the specified path z° (£) = O during the interval of time fp < ¢ < &
be defined by the equation of linear approximation

dz/dt =A(t)z+ B () u (L1

where z is an n-dimensional phase vector, A (f) and B (t) are continuous in[t,, 4]
matrices of order n X n and n X r respectively, and & an r-dimensional control

vector subjected to the restriction o

u=dU/dt, [|dU@EJ<p, »—const>0 (2.2)
te

Here and below the symbol | ¢ | denotes the Euclidean norm of vector ¢. Let the in-
dicated deviation be assessed by the quantity r (Nz (£)) (r (0) = 0), where ¥ is a
constant ( k X n )-matrix and r(-) is some function of phase coordinates specified on
R®),

The aim of the control is to select action u (f) (1.2) that would ensure the minimum
miss r (Nz (8)) of object (1. 1) on condition that the information on the initial state is
limited to z (¢,) & X°. Region X° is assumed to be convex and closed, and may coincide
with the complete phase space,

To define more accurately the phase state of object (1. 1), we measure a certain m-
dimensional vector ¥ whose relation to the phase vector x is defined by the equation

of linear approximation, y =Gtz -+ (1.3)

where G (t) is a known continuous ( m X n)-matrix and §(¢) is the interference inthe
observation channel, The models of interference & (f) are not a priori specified

but bjected t stricti
it are sbjecled TSN 2 E () <0, th<<t< O (1.4)
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where @(-) is a specified function (e.g. (1.4)) that can be a restriction of the form
| & (2) | << v imposed on the magnitude of the interference). We assume that system
(1.1),(1.3) for u (¢) = & (¢) = 0 is entirely observable during any time interval [Z,
1, ty <<t T

The processing of signal ¥;* (+) (y:*() = y* (1), 2, << T < ¢) (L3).(1.4) re-
ceived during the time interval #, < T <{ {,i.e, the solution of the problem of obser-
vation makes it possible to establish a certain set X (£, y:*(-)) C R™ which is the
region where the phase vector z (2) of system (1, 1) remains during each current instant
of time ¢ The programed control u (f) selected for the interval [¢, O] must take into
account all possible trajectories simultaneously released from X (¢, y,*(-)). This
leads to the problem of control of a set of trajectories, The solutions of the problem of
control and observation are in fact separated here: the observation process precedesthat
of control and the intervals of control and observation do not overlap.

If, however, instant ¢ of completion of observation is not fixed, the incompleteness
of information about the initial state and on moving coordinates of the system leads to
the problem of simultaneous optimization of the control and observation processes and,
among other things, to the synthesis of these at the instant of transition from observation
to control,

The airn of this paper is to present an exact description, of the solution and to obtain
a guaranteed unimprovable estimate of the miss, as well to estimate the number of pulse
observations and control, Problems of this kind were considered in [1— 5], where various
methods of approximate solution of the problem were proposed.

2. Basic definitions and assumptions. We call admissible the control
defined by functions U (t) of limited variation that are continuous from the right along
[ty, ©] and satisfy restriction (1.2), We assume a priori that the models of § (2
are piecewise continuous functions which for definiteness are assumed to be continuous
from the right, We denote by ¥, the set of all piecewise continuous and continuous
from the right m-vector functions in [#,, ®] that satisfy condition (1. 4), and assume that
8 is a subset of &, consisting of continuous functions.

We denote by X (¢, -) = X (¢, y:*(-) | U* (¢)) of such, and only such, vectors
z = z () which can obtain at instant # because of the trajectory z (T) of system (1. 1)
for some z (¢p) & X° and a fixed admissible control U* (-) (U (f) = 0)in[¢,, ¢l
under condition that each of the functions z (t) paired with some model § (1) & §,,
ty <O T < t,generates signal y* (t)(by formula (1.3)).

We denote by X® (U (-) | X (¢, -)) the set of such, and only such, vectors & =
x (¥) which can obtain at instant © because of the trajectory z (t) of system (1. 1) for
z (t) & X (¢, -) and fixed control U (%) in [¢, ©]. The control U (-) is assumed
here to be admissible. We assume that for ¢ = & the set X® (U(-) | +) is equal
X (8, ) + B (9) p, where vector p must satisfy condition

||pn<u—5udv*<r>u

We denote by Y (y, y,*(:) | U* (-)) the set of all possible continuations into the
interval [¢,, t,] of signal y,* (.) obtained in [#,, ¢] that are admitted by relation-
ships (1, 1) — (1. 4) for the specified admissible control U#* (t), %, < T <C #;. Each of
such continuations is uniquely determined by specifying vector  (f) & X (¢, -) and
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function § (1) E &y, t v ¢,

We make the following assumption,

Assumption 2, 1. (a)On R function r(-) is nonnegative, finite, and convex ;
(b) function ¢ (-)specified on R™) is convex, finite, and has no recessional directions
([61, p.86) and @ (0) < 0; (c) the cut-in {z | G (¢) z & ¥* () —Q} < X°,
where Q = {z lo (2) < 0} is a set of the level of function ¢ (-).takes place at
the initial instant ¢,

Note that Assumption 2, 1,b implies the boundedness of set Q. Furthermore, accord-
ing to {6], 0 & int Q (int Q is the set of inner points of set Q). The support func-
tion of set () is determined by formula (see [6], p. 136)

v (2) = p (z | Q) = max, ¢’z = cl (z) (2.1)

¥ (2) = inf {Ap* (A7'z) [A > 0}
where @* (-) is a convex function conjugate of @ (-) [6], and cl (-) denotes the
closure of function P (+).

8.The problem of correction with fixed instant of observation
completion, The instant of completion of observation is taken as fixed,
Problem 3. 1. We have to determine the quantity

r’ = miny.) max,r (Nz) = r° (t;, y.* (-)) 3.1
ze X8 (U)X (4, +)

and the related admissible optimum control U° (t) = U (v | yn*(-)), <t < ©
which provides the minimum in (3. 1) on condition that the control U* (7) for T <C
and the instant £, £, <C ¢; < O are fixed.

Note that for ¢, = @ the selection of control U® (1) in (3. 1) reduces in conformity
with the definition of set X® (U(-) | X (¢, -)) to that of choosing the jump of function
U* (-) atinstant 9 - 0. The following lemma defines the set X (¢, -)in terms of
its support function,

Lemma 3, 1, If Assumption 2, 1 is admitted, the support function of the convex
compact set X (¢, -) caused by the continuous variation of signal y,* (-) is defined
by formula

max -z =p(|X () =infy, {'S (r[—dL(v)] + (3.2)

xe=X(t,)
dL (v) [y* (v) — G (M z (v; U* ()}
LOyeAth={LO)|fdr®memse,)= v} (3.3)
te

where x (t; U* (-)) is the solution of system (1. 1) with the boundary condition z (£)=
0; y [+] is a function determined by formula (2, 1), and S (¢, T) is the fundamental
matrix of the conjugate system s* = —sA (Z). The lower bound in formula (3. 2) is
taken over all m vector functions L(-) of limited variation belonging to the set A (t,
1) in(3.3).

Note 3. 1. Lemma 3,1 remains valid if the lower bound in formula (3, 2) is taken
over all functions L(-) & A (¢, 1) whose generalized derivative is of the form
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il n+2

Lt

LO - D adr—1) (3.4)
i=1

where a; & R™, v, (4, tl, i =1, ..., n + 2. If observations of signal y,* (-)

are not carried out continuously but only on a certain set £ C ¢y, 2], the support func-

tion of set X (¢, -) is also determined by formula (3. 2), where the lower bound must

be taken over all functions L (-) & A (¢, ) of the form (3. 4) for 7; &= E. Hence

the set X (£, -) can be defined by formula

X,)= QE{xIG(T)S(t,T)xEy*(T)-—G(T)x(T;U*(-))—Q} (3.5)

The proof of Lemma 3. 1 and of the statc ment in Note 3. 1 may be obtained by using
the method described in [7] and the result in [8],

If Assumption 2, 1, ¢ is not satisfied, the set is determined by the relationship X (¢,
) =X(t ) 1 S (t, t) X°,where X (¢, -) is a set that is determined in confor-
mity with (3, 2), (3. 5).

From Lemma 3, 1 and Note 3. 1 we obtain the following statement,

Lemma 3, 2. Ifsignal y,* (-) is specified, then for any number & >> ( and vec-
tor | & R™ it is possible to find a collection of points {t;} < [¢,, ¢] with { = 1,

.. n+ 2, where n is the dimension of system (1. 1), such that

pUIXu(t, N<pUIX( ) +e (3.6)
where X (¢, ) is the set obtained by continuous observation, and X, (¢, *) is a set of
form (3. 5) obtained by discrete observations at points {T;}.

Note that formula (3. 2) can also be written as

(Y (l | X (tv ')) = inf {X (c, l) +c |CE R(l)} 3.7

t
% (e, 1) = infrgy | ¥ [— 4L (®)] (3.8)
to

In (3. 8) the lower bound is taken over all functions of limited variation L () =
A (t, ) for which t
faL@m@* @~ 6@z mU(N=c¢
te
Note that when the interference &* (v) in signal y;* (-) belongs to class E, i.e, is
a continuous function, then the lower bound in (3, 8) is reached for any ¢ on function
L (-) of form (3.4) in which =n - 1 has been substituted for n-} 2, It is also possible
to show that when
VPO -GS HLYpH @ Ur () EINtO, t < T
then for some p & R(™ the lower bound is reached in formula (3. 2) (and also in (3.7)).
Hence in shuch cases we have, instead of inequality (3. 6), the equality p (!| X, (¢,7)) =
P X ()
Let us revert to the problem formulated at the beginning of Sect. 3, Transposing
miny(.) and max, in formula (3. 1) and taking into account the definition of set
Xe (U(-) | X (¢, -)), we obtain formula

n® =, g () = Max (— ¥ max (53D B ()] + (one)) (i DY (2.9
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f(ty D=p@6@s DIX () —1 (0
w=p— U @]>0

where s (1; 1), t; <C v < @ is the solution of system & = —s4 (#) with the bound-
ary condition s (%) = I'N. Function 7* () is convex on R and conjugate to r (I)
[6], and (conc f)(I) denotes the concave envelope of function f ([) on R(¥),

The following theorem is valid,

Theorem 3, 1. An optimum control U (t) for Problem 3, 1 always exists and
satisfies the principle of minimum

8 8 8

S s(v; I°) B (t)dU°(t) = min {5‘ s(v; ) B(v)dU (v) l VarU
i t

ty 1

<l (3.10)

where [° is the vector for which maximum is reached in formula (3. 9). Moreover the
optimum control U° (1) can be presented in the form
k k
aue (v
=20 _ S pse—x), X ml<p (3. 10

i=1 i=1
7{6”1,'&], P«iER('), i=1,...,k

where L is the number of rows of matrix N .
Note 3,2. If matrix N = n’ (row-vector),i.e. kX =1 and r (Nz) = |n'z |,

then al, 1>1>0
(conc f) (t5; 1) = {— bl 0>l.>——1], if a+b<<0
— oo, [>1
o (Yall@e—b)l+a+0b), |11 )
(concf)(tl,l)_{ o |”>1}, if a+b5>0

a=p (n'S (tl’ 0) | X (tlv '))’ b= Y (—’n’S (tlv ﬂ) I X (tl, '))
Formula (3, 9) can be rewritten as

ri°=max{a+b ,a+c,b+c}, ¢ = —pn* max |[r'S(v,3) B ()| (3.12)

2 fi<r<e

The optimum control U° (t) has in this case only one jump.
Let us choose vector ¢ & R(K so that

u* max |s(t; 1) B(t)| > V'q > (conc f) (t1; 1), Vi (3. 13)
1,<v<8
where r,° is determined by formula (3, 9). Vector ¢’ that satisfies the inequality (3. 13)

must necessarily exist, On the other hand a direct computation will show that vector ¢
is the solution of the following extremum problem g (I) = (—f (t,; 1)) *:

& 8
re=g ('5" NS (x,9)B(x)dU° (1,-)) = [tlll(i‘ilg (§ NS (v, 9)B(v)dU (r)) (3.19)

8
g=— [ NS ®) B@aU° @ (3.15)
1y
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We have the following theorem.

Theorem 3, 2. If vector ¢ = R™ satisfies inequality (3, 13), then the control
U° (1) that resolves problem (3, 15) is optimum for Problem 3, 1. This control also
solves problem (3, 14), and any solution of the latter is a solution of problem (3. 1).

Here (3, 14) can be considered as a problem of minimization of function g (Nx (%))
(3. 15) at the final state x (®) of system (1, 1) for a known initial state z (¢;) = 0.
Theorem 3, 2 states that problems 3, 1 and (3. 14) are equivalent.

Note that the quantity r,° defined by formula (3. 9),(3. 14) is the guaranteed result of
control for continuous observation of signal (1.3) in [¢,, #,] and for an exact estimate
of region X (t;, +). If observations are carried out at discrete instants of time or when
region X (#;, ) is only approximately known, the guaranteed result r,’ is less satis~
factory,

Let us consider in greater detail one method of estimating region X (¢,, ). Actually,
we have to estimate region NS (¢, 9) X (¢;, ) in R®), since it is this region that
appears in formula (3. 9). If perturbations § (.) in signal (1.3) are fairly small, region
X (t;, °) lies in some reasonably small neighborhood of the affine set x* (t) +
Ker G (t;) (Ker G = {z|Gz = 0}), where z* (f;) is the value of the phase vec-
tor of system (1. 1) that obtains at instant # . With this in mind it is expedient to esti-
mate region NS (¢, ¥) X (¢,, ) by a k-dimensional rectangle II oriented with re-
spect to the orthogonal axes [, . . ., [, so that the support functions of sets IT and
NS (t;, 8 X (¢, *) coincide on unit vectors +1;, i =1, ..., k ,or differ only
slightly from these, Vectors [;, ..., [, are to be chosen so that the first j vectors
form the basis in the subspace NS (¢;, ¥) Ker G (#;) and the remaining k — j vec-
tors supplement the former to the orthonormal basis in R(). This construction shows
that the direction of vectors I;, . .., lp chosen in this manner depends only on the
instant of time ¢, , while being independent of the availability of signal y,, (-) and of
the configuration of region X (#;, -)-

We introduce the notation

P L)y=p(s(ty W) IX (8, ) =ci, Flty —l) = i1 o &
and assumne that the unit vectors [; have been chosen by the method indicated above.
1t is not difficult to verify that vectors /;, and the quantities ¢; uniquely define the
k-dimensional rectangle
€ — Chiy °k — Cak )

H=LH*+Lb, L=[l1,.-.,lk], b=(—-§——,..., 2

¢+ ¢ .
l'I*={aeR(")la:(&l,...,ak),lailgvi=——?—'ﬂ,z= 1,...,k}

where L is a matrix composed of column-vectors {; and II,, is the k-dimensional
rectangle.
Taking the above into consideration, we substitute for (3. 9) the approximate formula
e = 1°(t1, yo* (+)) = max {I'b — u* max |s(v; L'l) B (v)| + (conc p) (|1,
<1 t<T<o
Dol ) { 0, ||lll<1} (3-16)
= r =
rO=1h "O={1 0, jy>1

Function (conc p) (! | T1,) consists of k (k — 1) 4 1 pieces of smooth surfaces,
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and in the k-dimensional rectangle
k 3,
/2
[h<vis, s =(2 vi’) , i=1,....k

i=1
is constant and equal S.

Below we present the statement on the number of observations required for solving
problem (3. 16).

Theorem 3,3, Forany number £ > ( it is possible to indicate not more than
2k (n + 2) points {7;} < [#,, #,] such that for the set X, (#,,*) obtained by observ-
ing signal (1. 3) at these points, the result 7,° of the solution of the problem (3. 16) will
satisfy the inequality 7,° < r,° 4 e, where r,° is obtained in the solution of problem
(3. 16) for the set X (¢,, -) by continuous observation of signal (1.3) in [¢,, AR

It is not difficult to obtain the proof of Theorem 3, 3 by using Lemma 3, 2 and taking
into account the continuous dependence of the quantity (conc p) (I | II) on parame-
ters ¢;, i =1, ..., 2k, which in tum implies the continuous dependence of r,°
(3. 16) on these parameters,

4. The problem of correction with synthesis at the instant of
completion of observation, Let us consider the following problem,

Problem 4.1, Determine the quantity r,° = r°(£°, y* (-)) and the related
admissible optimum control U™ (1) = U (v | yp (+)), ° < v < ¥, which provides
the minimum in (3. 1) on condition that the previously specified admissible control
U* (1) (U* (t) = 0), tp <1< O, o0btains in [£y, £°]. Here t° = ° (y;o* ()
is the earliest instant of time for which

r(t% ye* ()< min supr®(t, 5, (1), v €Y Gy OIU* () an)
1< y,(°)

In Problem 4. 1 the instant of correction is not specified a priori. On the contrary,
it has to be synthesized according to condition (4. 1) on the basis of incoming informa-
tion. After {2 = ¢° (y;o* (+)) has been determined, Problem 4, 1 reduces to Problem
3.1for {, = t°. We note in connection with this that in synthesizing that instant of
time in Problem 4, 1 it is necessary to compute the quantity r° (¢, y, (-)) (3. 1) for va-
rious values of £ The quantity r° (¢, y; (+)) may be determined either exactly by
formula (3. 9) or approximately by formula (3, 16) (for r (!) = | /). In either case
r;° (4.1) is the guaranteed result of control, and in the worst case for % => ° we always
have r,° > r,° If, however, ¢, < #°, the strict inequality r,° > r,” is satisfied.

Let us now consider the question of existence of instant t° (i (+)). For this we need
to take into account one property of the linear completely observable systems of the
form (1. 1),(L.3) (U (-) = 0).

Property A. For any instant £ > f, and any signal (1, 3) that is obtained in the
interval [#o, t], as well as for any continuous extension yg (1) = Y (¢, y,* (-) 10)
of signal y,* (-),the set X (t,+) is in the meaning of Hausdorff's principle continuous
at point ¢ from the right,

Without going into the details of this property, we note that for G (1) = G (const)
system (1. 1) possesses property A,

Lemma 4,1, LetProperty A be satisfied. Then there exists the smallest instant
of time ¢° for which condition (4. 1) is satisfied,

Proof. Let us fix some obtained ¥* (v), ¢, <<t < & of signal (1. 3), and set
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t* = inf {°}, where {¢°} is the set of instants ¢° which for y.* (1) = y* (¢ + 1), ¢, —
t < 1 < 0 satisfy inequality (4, 1). Let us now show that at instant ¢* inequality (4. 1)
is satisfied, In fact, specifying number ¢ >> 0 and assuming that ¢ > t* , we can select
foreach * & {£°}, t* < < tsuch y; (+) E Y (4, yo* (+) | U* (+)) that

—e+ 1 (t°, yto. () <, Y (&) (4.2)

in conformity with inequality (4. 1), Taking into consideration the continuity of inter~
ference E* (-) and of control U* (-),and allowing for the Property A, we find from for-
mulas (3, 9) and (3, 16) that function r° (¢, y* (+)) is semicontinuous from below at point
t* when ¢ tendsto * from the right, Passing in inequality (4. 2) to the limit for ° —
t* - 0, we obtain — &4~ r° (¢*, y,e* (+)) < 7° (4, ¥t (+))- Owing to the arbitrariness of
the selection of the number & and of the instant ¢ > t*, we can consider that the vali~
dity of inequality (4. 1) at instant ¢* is established,

The reasoning of Sect. 4 is summarized by the following theorem,

Theorem 4.1, The solution of Problem 4. 1,i.e, the pair {£° (y,»* (-)) and
U” (- | yro* ()} satisfies condition

sup maxr (Nz (%)) = min sup maxr (Nz(9)) (4.3)
vg(s) x(8) (LU vg() x(8)
pp()EY® y*()IU*(), z(0)e XU ()X (¢t y*x

() 1T*(-))

The maximum in the left~hand part of equality (4. 3) is taken for £ = ¢° and U ()=
U
5. Example, Let us consider system (u = dU/d?)

H =12y, 3 =u, 0SS, EAGIRN (5.1

Sl &

We observe the signal
y( =z @4 §@), |E(T)[<A, A= const (5.2)

The deviation of motion z (¢) from the specified 2° (¢) = 0 is assessed by the quantity
r (Nz (1)) = | «1 (t) |- We impose in the general case the additional restriction on the
motion of systern (5. 1) by specifying that at the final instant of time the coordinates
must satisfy the condition |2, (0) | <v» v = const (5.3)

Problem 3, 1 for system (5. 1) with allowance for restriction (5. 3) is formulated as
follows: determine the minimum number «° and the optimum control U° (v), ¢t < T»
such that the inequalities | z; (8) | < a° and | z3 (8) | < v are satisfied by all vectors
z(8) € X* (U° ()| X (1,+)).

The numerical solution of the problem is carried out for uy =6, v =8, A =2, 9% = 2,
X° = {1, 25) | — 14 < m < — 6} U* (v) = 0, and the simulated signal y (t) and inter-
ference & (1) are specified in the form (Fig. 1)



Minimax synthesis in problems of pulse guidance and motion correction 9

y* (t) =

—8+4r, 0<1<05 2, 0<1<05
—9+ 41, 05<T1<10 £ () = 1, 05<t<1.0
2441, 10T <15’ —2, 10<t<is (8.4
—844r, 15<r<2.0 2, 1.5<<T<20

The regions X (t,-) which correspond to the continuous observation of signal (5.4)
(formula (3, 5) is the most convenient for computing these) are represented by polygons.

y
-2
7
7
1 / J
’
/
1, 1
Fig. 1
I
‘I
e
y
0
4

Fig. 2

Regions X (¢,+) in Fig, 2 denoted by numerals 1~6
relate to instants of time 0.5—0, 0.5, 1—0,1.0,
1.5—0,1.5, respectively, The first two sets are re-
presented by parallelograms and the last three by
irregular polygons, At instant : = 1.5 region X(z,+)
contracts abruptly to the point at coordinates

(~ 4,4). Note that for computing the set X (0.5—
0,-) it is sufficient to make only two observations
of signal (5.4) (namely at ¢+ = 0 and ¢ = 0.5—0),
for set X (0.5,+) three measurements (at ¢t = 0,

t = 0.5—0 and ¢t =0.5) are necessary, and for the
sets X (1—0,-) and X (1,-) four and five measure-
ments (at ¢t = 0, ¢t = 0,50, ¢ = 0,5 and so on),
respectively, are required,

Let us solve problem (3. 1), (5. 1) for instant ¢, =
0,5—0. Ignoring restrictions (5. 3) and using formula
(8. 12), we obtain m® = a, = 14. We further note
that the control u° (t)=—48 (vt — 2) solves the prob=-
lem for a® = 14 (v = 8). Thus the minimum with
respect to z neighborhood of zero is a® = 14 for
n = 0.5—0, Similar computations for 4 = 0.5

o \

0 ] o
Fig. 3

yield «° = 12 forthe control u° (1) = 28 (v — 1) — 48 (v — 2). It should be noted that
the problem of transfering sets X (0.5—0,-) and X (0.5,.) to the zero neighborhood that
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is minimum with respect to x1 is equivalent to the problem of transfer to the same neigh-
borhood of the segments which connect vertices 4 — B and 4’ — B of polygons
X (0.5—0,-) and X (0.5,-) (see Fig, 2),

Let us consider now Problem 4. 1. First, we point out that one must not complete the
observation earlier than at ¢ = 1. Here, even in the worst case of obtained signal y (1),
T >t ,a further observation yields a lower value for a°. Thus, solving Problem 3, 1
((5.1.)) for n =1 and control u° (1) = 58 (t — 1) — 8 (v — 2) we find that «® = 3 .
In the case of the " worst" signal y (t) = — 124 4t. T > 1 region X (t) that corre-
sponds to that signal is obtained by a simple transformation of set X (1,-) on the basis of
system (5. 1), Formula (3. 12) implies that for all ¢, 1 <t <2 wehavea® > r; >3 .
Thus # = ¢t (y* (+)) = 1 and the control »* (t) = 56 (vt — 1) — 8 (v — 2) provide the
solution of problem (4, 1) for system (5. 1),(5. 2) for a specific signal (5. 4). The mini-
mum value of a° that can be guaranteed on the basis of incoming information (5.4) is
equal three. The continuation of observation beyond ¢ == 1 would in the worst case of
t = 1.5 yield «® = 5. In the case of signal (5. 4) obtained at instant : = 1.5 region
X (t,+) would contract to a point, and the control u° (t) = 46 (v — 1.5) would yield
a’ = 0 (Fig.3).
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